Menu

Drop Down MenusCSS Drop Down MenuPure CSS Dropdown Menu

Key Formula For Success

Key Formula For Success

9th Class syllabus

Science Class 9 Syllabus
Course Structure
First Term Units
Marks

Second Term Units

I.
Matter - Its Nature & Behaviour
29
I.
Matter - Its Nature & Behaviour
18
II.
Organization in Living World
18
II.
Organization in Living World
26
III.
Motion, Force and Work
30
III.
Mechanics, energy and sound
36
IV.
Food; Food Production
13
IV.
Our Environment
10
90


90
First Term Units
Unit: Matter - Nature and Behaviour
Definition of matter; solid, liquid and gas; characteristics - shape, volume, density; change of state-melting (absorption of heat), freezing, evaporation (cooling by evaporation), condensation, sublimation.
Nature of matter: Elements, compounds and mixtures. Heterogenous and homogenous mixtures, colloids and suspensions.
Unit: Organization in the Living World
Cell - Basic Unit of life: Cell as a basic unit of life; prokaryotic and eukaryotic cells, multicellular organisms; cell membrane and cell wall, cell organelles; chloroplast, mitochondria, vacuoles, endoplasmic reticulum, Golgi apparatus; nucleus, chromosomes - basic structure, number. TISSUES, Organs, Organ System, Organism; Structure and functions of animal and plant tissues (four types in animals; meristematic and permanent tissues in plants).
Unit: Motion, Force and Work
Motion: Distance and displacement, velocity; uniform and non-uniform motion along a straight line; acceleration, distance-time and velocity-time graphs for uniform motion and uniformly accelerated motion, equations of motion by graphical method; elementary idea of uniform circular motion.
Force and Newton's laws: Force and motion, Newton's laws of motion, inertia of a body, inertia and mass, momentum, force and acceleration. Elementary idea of conservation of momentum, action and reaction forces.
Gravitation: Gravitation; universal law of gravitation, force of gravitation of the earth (gravity), acceleration due to gravity; mass and weight; free fall.
Unit: Food Production
Plant and animal breeding and selection for quality improvement and management; use of fertilizers, manures; protection from pests and diseases; organic farming.
Second Term Units
Unit: Matter - Nature and Behaviour
Particle nature, basic units: atoms and molecules. Law of constant proportions. Atomic and molecular masses.
Mole Concept: Relationship of mole to mass of the particles and numbers. Valency. Chemical formula of common compounds.
Structure of atom: Electrons, protons and neutrons; Isotopes and isobars.
Unit: Organization in the Living World
Biological Diversity: Diversity of plants and animals - basic issues in scientific naming, basis of classification. Hierarchy of categories / groups, Major groups of plants (salient features) (Bacteria, Thalophyta, Bryo phyta, Pteridophyta, gymnosperms and Angiosperms). Major groups of animals (salient features) (Non-chordates upto phyla and chordates upto classes).
Health and Diseases: Health and its failure. Infectious and Non-infectious diseases, their causes and manifestation. Diseases caused by microbes (Virus, Bacteria and protozoans) and their prevention, Principles of treatment and prevention. Pulse polio programmes.
Unit: Mechanics, work and sound
Floatation: Thrust and pressure. Archimedes' principle, buoyancy, elementary idea of relative density.
Work, energy and power: Work done by a force, energy, power; kinetic and potential energy; law of conservation of energy.
Sound: Nature of sound and its propagation in various media, speed of sound, range of hearing in humans; ultrasound; reflection of sound; echo and SONAR. Structure of the human ear (auditory aspect only).
Unit: Our environment
Physical resources: Air, Water, Soil. Air for respiration, for combustion, for moderating temperatures; movements of air and its role in bringing rains across India. Air, water and soil pollution (brief introduction). Holes in ozone layer and the probable damages. 
Bio-geo chemical cycles in nature: Water, oxygen, carbon and nitrogen.

 Mathematics Class 9 Syllabus

Course Structure

First Term Units
Marks
I
Number System
17
II
Algebra
25
III
Geometry
37
IV
Co-ordinate Geometry
6
V
Mensuration
5

Total
90

Second Term Units
Marks
II
Algebra (contd.)
16
III
Geometry (contd.)
38
V
Mensuration (contd.)
18
VI
Probability
8
VII
Statistics
10

Total
90
·         As per CCE guidelines, the syllabus of Mathematics for classes IX and X has been divided term wise.
·         The units specified for each term shall be assessed through both formative and summative assessment.
·         In each term, there will be two formative assessments, each carrying 10% weightage.
·         The summative assessment in term I will carry 30% weightage and the summative asssessment in the term II will carry 30% weightage.

First Term Syllabus

UNIT I: NUMBER SYSTEMS

1. REAL NUMBERS
1. Review of representation of natural numbers, integers, rational numbers on the number line. Representation of terminating / non-terminating recurring decimals, on the number line through successive magnification. Rational numbers as recurring/terminating decimals.
2. Examples of non-recurring / non-terminating decimals. Existence of non-rational numbers (irrational numbers) such as √2, √3 and their representation on the number line. Explaining that every real number is represented by a unique point on the number line and conversely, every point on the number line represents a unique real number.
3. Existence of √x for a given positive real number x (visual proof to be emphasized).
4. Definition of nth root of a real number.
5. Recall of laws of exponents with integral powers. Rational exponents with positive real bases (to be done by particular cases, allowing learner to arrive at the general laws.)
6. Rationalization (with precise meaning) of real numbers of the type (and their combinations)

UNIT II: ALGEBRA

1. POLYNOMIALS 
Definition of a polynomial in one variable, its coefficients, with examples and counter examples, its terms, zero polynomial.
Degree of a polynomial. Constant, linear, quadratic and cubic polynomials; monomials, binomials, trinomials. Factors and multiples. Zeros of a polynomial. State and motivate the Remainder Theorem with examples. Statement and proof of the Factor Theorem. Factorization of (ax2 + bx + c, a + 0 where a, b and c are real numbers, and of cubic polynomials using the Factor Theorem) dt quadratic & cubic polynomial.
Recall of algebraic expressions and identities. Further verification of identities of the type (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx, (x ± y)3 = x3 ± y3 ± 3xy (x ± y), x³ ± y³ = (x ± y) (x² ± xy + y²), x3 + y3 + z3 - 3xyz = (x + y + z) (x2 + y2 + z2 - xy - yz - zx) and their use in factorization of polymonials. Simple expressions reducible to these polynomials.

UNIT III: GEOMETRY

1. INTRODUCTION TO EUCLID'S GEOMETRY
History - Geometry in India and Euclid's geometry. Euclid's method of formalizing observed phenomenon into rigorous mathematics with definitions, common/obvious notions, axioms/postulates and theorems. The five postulates of Euclid. Equivalent versions of the fifth postulate. Showing the relationship between axiom and theorem, for example:
·         (Axiom) 1. Given two distinct points, there exists one and only one line through them.
·         (Theorem) 2. (Prove) Two distinct lines cannot have more than one point in common.
2. LINES AND ANGLES
1. (Motivate) If a ray stands on a line, then the sum of the two adjacent angles so formed is 180° and the converse.
2. (Prove) If two lines intersect, vertically opposite angles are equal.
3. (Motivate) Results on corresponding angles, alternate angles, interior angles when a transversal intersects two parallel lines.
4. (Motivate) Lines which are parallel to a given line are parallel.
5. (Prove) The sum of the angles of a triangle is 180°.
6. (Motivate) If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.
3. TRIANGLES
1. (Motivate) Two triangles are congruent if any two sides and the included angle of one triangle is equal to any two sides and the included angle of the other triangle (SAS Congruence).
2. (Prove) Two triangles are congruent if any two angles and the included side of one triangle is equal to any two angles and the included side of the other triangle (ASA Congruence).
3. (Motivate) Two triangles are congruent if the three sides of one triangle are equal to three sides of the other triangle (SSS Congruene).
4. (Motivate) Two right triangles are congruent if the hypotenuse and a side of one triangle are equal (respectively) to the hypotenuse and a side of the other triangle.
5. (Prove) The angles opposite to equal sides of a triangle are equal.
6. (Motivate) The sides opposite to equal angles of a triangle are equal.
7. (Motivate) Triangle inequalities and relation between 'angle and facing side' inequalities in triangles.

UNIT IV: COORDINATE GEOMETRY

1. COORDINATE GEOMETRY
The Cartesian plane, coordinates of a point, names and terms associated with the coordinate plane, notations, plotting points in the plane, graph of linear equations as examples; focus on linear equations of the type Ax + By + C = 0 by writing it as y = mx + c.

UNIT V: MENSURATION

1. AREAS
Area of a triangle using Heron's formula (without proof) and its application in finding the area of a quadrilateral. Area of cyclic quadrilateral (with proof) - Brahmagupta's formula.

Second Term Syllabus

The text of OTBA for SA-II will be from Unit - 7 (Statistics)

UNIT II: ALGEBRA (Contd.)

2. LINEAR EQUATIONS IN TWO VARIABLES
Recall of linear equations in one variable. Introduction to the equation in two variables. Prove that a linear equation in two variables has infinitely many solutions and justify their being written as ordered pairs of real numbers, plotting them and showing that they seem to lie on a line. Examples, problems from real life, including problems on Ratio and Proportion and with algebraic and graphical solutions being done simultaneously.

UNIT III: GEOMETRY (Contd.)

4. QUADRILATERALS
1. (Prove) The diagonal divides a parallelogram into two congruent triangles.
2. (Motivate) In a parallelogram opposite sides are equal, and conversely.
3. (Motivate) In a parallelogram opposite angles are equal, and conversely.
4. (Motivate) A quadrilateral is a parallelogram if a pair of its opposite sides is parallel and equal.
5. (Motivate) In a parallelogram, the diagonals bisect each other and conversely.
6. (Motivate) In a triangle, the line segment joining the mid points of any two sides is parallel to the third side and (motivate) its converse.
5. AREA
Review concept of area, recall area of a rectangle.
1. (Prove) Parallelograms on the same base and between the same parallels have the same area.
2. (Motivate) Triangles on the same (or equal base) base and between the same parallels are equal in area.
6. CIRCLES
Through examples, arrive at definitions of circle related concepts, radius, circumference, diameter, chord, arc, secant, sector, segment subtended angle.
1. (Prove) Equal chords of a circle subtend equal angles at the center and (motivate) its converse.
2. (Motivate) The perpendicular from the center of a circle to a chord bisects the chord and conversely, the line drawn through the center of a circle to bisect a chord is perpendicular to the chord.
3. (Motivate) There is one and only one circle passing through three given non-collinear points.
4. (Motivate) Equal chords of a circle (or of congruent circles) are equidistant from the center (or their repective centers) and conversely.
5. (Prove) The angle subtended by an arc at the center is double the angle subtended by it at any point on the remaining part of the circle.
6. (Motivate) Angles in the same segment of a circle are equal.
7. (Motivate) If a line segment joining two points subtends equal angle at two other points lying on the same side of the line containing the segment, the four points lie on a circle.
8. (Motivate) The sum of either of the pair of the opposite angles of a cyclic quadrilateral is 180o and its converse.
7. CONSTRUCTIONS
1. Construction of bisectors of line segments and angles of measure 60°, 90°, 45° etc., equilateral triangles.
2. Construction of a triangle given its base, sum/difference of the other two sides and one base angle.
3. Construction of a triangle of given perimeter and base angles.

UNIT V: MENSURATION (Contd.)

2. SURFACE AREAS AND VOLUMES
Surface areas and volumes of cubes, cuboids, spheres (including hemispheres) and right circular cylinders/cones.

UNIT VI: PROBABILITY

History, Repeated experiments and observed frequency approach to probability. Focus is on empirical probability. (A large amount of time to be devoted to group and to individual activities to motivate the concept; the experiments to be drawn from real - life situations, and from examples used in the chapter on statistics).

UNIT VII: STATISTICS

Introduction to Statistics: Collection of data, presentation of data - tabular form, ungrouped / grouped, bar graphs, histograms (with varying base lengths), frequency polygons, qualitative analysis of data to choose the correct form of presentation for the collected data. Mean, median, mode of ungrouped data.


No comments:

Post a Comment